# Video Poker - Other Games

One-coin pay table

--------------------

Pair, 6-10’s 1

Pair, J-A’s 2

2 Pair 3

3 of a Kind 4

Straight 6

Flush 9

Full House 12

4 of a Kind 50

Straight-Flush 200

Royal Flush 1,000

2-5 coins, multiply 1-coin payout

5-coin Royal pays 20,000 coins

With correct play, what is the return of these machines?

As a side note, these machines earn slot points at the same rate as video poker (half the rate of the regular slots), but I find that I accumulate point faster due to the obvious double-down situations. Does that indirectly improve the return?

I enjoy your website very much! Thanks!!

1 = 0.926273 + 0.00002537*j

j = (1-0.926273)/ 0.00002537 = 2,906.

The 2,906 is measured in bet units. For a $1 machine ($5 total bet) the breakeven point would be $5*2,906 = $14,530. So, $12,000 is still a long way away from break-even. Before some perfectionist writes me, as the progressive goes up, the optimal strategy will change, to be more aggressive towards playing for royals. My answer assumes the player follows the same 6/5 optimal strategy the entire time.

A simple approximation for any 52-card video poker game is to add 0.5% for every extra 1,000 coins in the meter. In the case of a $10,100 meter, that is $6,100 higher than a non-progressive. It is a dollar game, so that is 6,100 coins, so add 0.5% × (6,100/1,000) = 3.05% to the base return. The base return is 92.63%, so the total return could be approximated as 94.66% + 3.05% = 97.71%. The actual return for a $10,100 meter is 97.75%, so pretty close.

The following table shows for each initial hand the pre-double win, pre-double probability, number of doubles required, post-double win, and probability achieving the post-double win, including the $250 bonus. The lower right cell shows a return of 115.5%. You will get a jackpot every 297 hands on average, with an average jackpot of $1,717.46.

### 8-5 Triple Bonus Return Table with $250 Bonus for Wins of $1,200 or More

Pre-Double Win | Pays | Pre-Double Probability | Doubles Required | Post-Double Win | Post-Double Probability | Return |

Royal flush | $4000 | 0.000026 | 0 | $4250 | 0.000026 | 0.02193 |

Straight flush | $500 | 0.000118 | 2 | $2250 | 0.00003 | 0.013322 |

4 aces | $1200 | 0.000235 | 0 | $1450 | 0.000235 | 0.068227 |

4 2-4 | $600 | 0.000542 | 1 | $1450 | 0.000271 | 0.078557 |

4 5-K | $250 | 0.001629 | 3 | $2250 | 0.000204 | 0.091637 |

Full house | $40 | 0.010546 | 5 | $1530 | 0.00033 | 0.100842 |

Flush | $25 | 0.011055 | 6 | $1850 | 0.000173 | 0.063913 |

Straight | $20 | 0.012738 | 6 | $1530 | 0.000199 | 0.060902 |

3 of a kind | $15 | 0.075542 | 7 | $2170 | 0.00059 | 0.256136 |

Two pair | $5 | 0.123065 | 8 | $1530 | 0.000481 | 0.147101 |

Jacks or better | $5 | 0.211575 | 8 | $1530 | 0.000826 | 0.252898 |

Total | 0.447071 | 0 | 0 | 0.003364 | 1.155465 |

To the best of my knowledge, the loosest video poker game in Vegas is the 101.60% 5¢ Loose Deuces game at the Fitzgeralds. It is located upstairs, near the sports book.

Update: This answer was correct at the time of writing. However, said machine has since disappeared. See my Ask the Wizard #292 for the new loosest video poker machine in Vegas.

### Video Poker Return and Hit Frequency

Game | Return | Hit Frequency |

Deuces and joker wild | 0.990675 | 0.503768 |

Tens or better | 0.991390 | 0.494518 |

Bonus Poker | 0.991660 | 0.455145 |

Jacks or Better | 0.995439 | 0.454565 |

Double Double Bonus | 0.989808 | 0.447163 |

Deuces wild | 0.994179 | 0.442807 |

Joker poker | 0.984425 | 0.441435 |

Double Bonus | 0.991065 | 0.431893 |

One-eyed jacks | 0.989562 | 0.370122 |

Royal aces | 0.991981 | 0.300874 |

### Royal Aces Bonus Poker

Hand | Pays | Combinations | Probability | Return |
---|---|---|---|---|

Royal flush | 800 | 490,090,668 | 0.000025 | 0.019669 |

Straight flush | 100 | 2,417,714,292 | 0.000121 | 0.012129 |

Four aces | 800 | 4,936,967,256 | 0.000248 | 0.198140 |

Four 2-4 | 80 | 10,579,511,880 | 0.000531 | 0.042460 |

Four 5-K | 50 | 31,662,193,440 | 0.001588 | 0.079421 |

Full house | 10 | 213,464,864,880 | 0.010709 | 0.107090 |

Flush | 5 | 280,594,323,000 | 0.014077 | 0.070384 |

Straight | 4 | 276,071,121,072 | 0.013850 | 0.055399 |

Three of a kind | 3 | 1,470,711,394,284 | 0.073782 | 0.221346 |

Two pair | 1 | 2,398,705,865,028 | 0.120337 | 0.120337 |

Pair of aces | 1 | 1,307,753,371,584 | 0.065607 | 0.065607 |

Nothing | 0 | 13,935,843,099,816 | 0.699126 | 0.000000 |

Total | 19,933,230,517,200 | 1.000000 | 0.991982 |

The standard deviation is 13.58! That is over three times as high as 9-6 Jacks or Better at 4.42.

However, if you limit me to games that are easy to find, my nomination is Triple Double Bonus, with a standard deviation of 9.91. Here is that pay table.

### Triple Double Bonus Poker

Hand | Pays | Combinations | Probability | Return |
---|---|---|---|---|

Royal flush | 800 | 439,463,508 | 0.000022 | 0.017637 |

Straight flush | 50 | 2,348,724,720 | 0.000118 | 0.005891 |

4 aces + 2-4 | 800 | 1,402,364,496 | 0.000070 | 0.056282 |

4 2-4 + A-4 | 400 | 3,440,009,028 | 0.000173 | 0.069031 |

4 aces + 5-K | 160 | 2,952,442,272 | 0.000148 | 0.023699 |

4 2-4 + 5-K | 80 | 6,376,626,780 | 0.000320 | 0.025592 |

4 5-K | 50 | 31,673,324,076 | 0.001589 | 0.079449 |

Full house | 9 | 206,321,656,284 | 0.010351 | 0.093156 |

Flush | 7 | 311,320,443,672 | 0.015618 | 0.109327 |

Straight | 4 | 252,218,322,636 | 0.012653 | 0.050613 |

3 of a kind | 2 | 1,468,173,074,448 | 0.073655 | 0.147309 |

Two pair | 1 | 2,390,581,734,264 | 0.119929 | 0.119929 |

Jacks or better | 1 | 3,944,045,609,748 | 0.197863 | 0.197863 |

Nothing | 0 | 11,311,936,721,268 | 0.567491 | 0.000000 |

Total | 19,933,230,517,200 | 1.000000 | 0.995778 |

This question was raised and discussed in the forum of my companion site Wizard of Vegas.

- 6-5 Bonus Poker progressive.
- 2% meter rise on royal flush.
- 5-coin game.

Now assume the following about me.

- Minimum return to play of 100.5%.
- I’m capable of playing a progressive until it hits.
- I know perfect 6-5 Bonus Poker strategy for a 4000-coin royal.

What is the least the jackpot should be for me to play?

I might add that if you start playing 4000-coin jackpot strategy at exactly a 7,281.8 jackpot, you can expect to profit 201.18 bets. However, if you took the time to learn the strategy changes for a 7,281.8 coin jackpot, then your expected profit would be 234.31 coins.

On a related note, I just finished reading The Secret World of Video Poker Progressives by Frank Kneeland. This book has lots of formulas for much more complicated progressive situations, as well as practical advice and stories based on his years running a team of progressive hunters. I recommend it for advantage progressive video poker players.