On this page
90 Number Bingo - Analysis
Introduction
Unlike American bingo, with a 5 by 5 card, with numbers from 1 to 75, in Europe and South America bingo is often played with a 3 by 9 card with numbers from 1 to 90. Below is an example.
As the example shows, the card contains 3 rows and 9 columns. On each row are exactly 5 numbers. The other four cells in each row are blank, or free squares. From other examples I have seen the first row contains the numbers 1 to 10, the second 11 to 20, and so on, but mathematically this doesn't matter. Winning events I have heard of all are based on covering rows only, so mathematically speaking the game could played on a 3 by 5 card with all numbers covered, the odds would be the same.
Virginia Recommended Online Bingo Rooms
The following table shows the probability of covering 0 to 3 rows exactly by number of balls drawn.
Probabilities in 90-Number Bingo
Calls | Zero Rows | One Row | Two Rows | Three Rows |
---|---|---|---|---|
5 | 0.99999993 | 0.00000007 | 0.00000000 | 0.00000000 |
6 | 0.99999959 | 0.00000041 | 0.00000000 | 0.00000000 |
7 | 0.99999857 | 0.00000143 | 0.00000000 | 0.00000000 |
8 | 0.99999618 | 0.00000382 | 0.00000000 | 0.00000000 |
9 | 0.99999140 | 0.00000860 | 0.00000000 | 0.00000000 |
10 | 0.99998280 | 0.00001720 | 0.00000000 | 0.00000000 |
11 | 0.99996846 | 0.00003154 | 0.00000000 | 0.00000000 |
12 | 0.99994594 | 0.00005406 | 0.00000000 | 0.00000000 |
13 | 0.99991215 | 0.00008785 | 0.00000000 | 0.00000000 |
14 | 0.99986334 | 0.00013666 | 0.00000000 | 0.00000000 |
15 | 0.99979502 | 0.00020498 | 0.00000000 | 0.00000000 |
16 | 0.99970184 | 0.00029815 | 0.00000000 | 0.00000000 |
17 | 0.99957761 | 0.00042238 | 0.00000001 | 0.00000000 |
18 | 0.99941517 | 0.00058481 | 0.00000002 | 0.00000000 |
19 | 0.99920632 | 0.00079364 | 0.00000005 | 0.00000000 |
20 | 0.99894179 | 0.00105812 | 0.00000010 | 0.00000000 |
21 | 0.99861115 | 0.00138866 | 0.00000018 | 0.00000000 |
22 | 0.99820277 | 0.00179689 | 0.00000034 | 0.00000000 |
23 | 0.99770370 | 0.00229570 | 0.00000060 | 0.00000000 |
24 | 0.99709968 | 0.00289929 | 0.00000103 | 0.00000000 |
25 | 0.99637503 | 0.00362325 | 0.00000171 | 0.00000000 |
26 | 0.99551261 | 0.00448461 | 0.00000279 | 0.00000000 |
27 | 0.99449375 | 0.00550182 | 0.00000442 | 0.00000000 |
28 | 0.99329824 | 0.00669488 | 0.00000688 | 0.00000000 |
29 | 0.99190422 | 0.00808528 | 0.00001050 | 0.00000000 |
30 | 0.99028822 | 0.00969603 | 0.00001575 | 0.00000000 |
31 | 0.98842504 | 0.01155172 | 0.00002324 | 0.00000001 |
32 | 0.98628779 | 0.01367841 | 0.00003379 | 0.00000001 |
33 | 0.98384784 | 0.01610367 | 0.00004847 | 0.00000002 |
34 | 0.98107483 | 0.01885649 | 0.00006864 | 0.00000004 |
35 | 0.97793665 | 0.02196722 | 0.00009606 | 0.00000007 |
36 | 0.97439951 | 0.02546744 | 0.00013293 | 0.00000012 |
37 | 0.97042791 | 0.02938983 | 0.00018206 | 0.00000020 |
38 | 0.96598475 | 0.03376802 | 0.00024690 | 0.00000034 |
39 | 0.96103137 | 0.03863633 | 0.00033175 | 0.00000055 |
40 | 0.95552768 | 0.04402955 | 0.00044189 | 0.00000088 |
41 | 0.94943224 | 0.04998261 | 0.00058377 | 0.00000139 |
42 | 0.94270245 | 0.05653021 | 0.00076518 | 0.00000215 |
43 | 0.93529473 | 0.06370641 | 0.00099556 | 0.00000331 |
44 | 0.92716472 | 0.07154411 | 0.00128615 | 0.00000502 |
45 | 0.91826755 | 0.08007453 | 0.00165039 | 0.00000753 |
46 | 0.90855815 | 0.08932650 | 0.00210418 | 0.00001117 |
47 | 0.89799157 | 0.09932579 | 0.00266623 | 0.00001641 |
48 | 0.88652342 | 0.11009427 | 0.00335844 | 0.00002387 |
49 | 0.87411026 | 0.12164899 | 0.00420635 | 0.00003440 |
50 | 0.86071014 | 0.13400121 | 0.00523950 | 0.00004915 |
51 | 0.84628315 | 0.14715527 | 0.00649196 | 0.00006963 |
52 | 0.83079206 | 0.16110738 | 0.00800271 | 0.00009786 |
53 | 0.81420297 | 0.17584435 | 0.00981620 | 0.00013648 |
54 | 0.79648609 | 0.19134220 | 0.01198273 | 0.00018898 |
55 | 0.77761658 | 0.20756463 | 0.01455894 | 0.00025984 |
56 | 0.75757538 | 0.22446152 | 0.01760820 | 0.00035491 |
57 | 0.73635018 | 0.24196726 | 0.02120090 | 0.00048166 |
58 | 0.71393646 | 0.25999913 | 0.02541473 | 0.00064968 |
59 | 0.69033853 | 0.27845558 | 0.03033472 | 0.00087116 |
60 | 0.66557064 | 0.29721460 | 0.03605320 | 0.00116155 |
61 | 0.63965818 | 0.31613208 | 0.04266942 | 0.00154032 |
62 | 0.61263880 | 0.33504034 | 0.05028895 | 0.00203191 |
63 | 0.58456365 | 0.35374681 | 0.05902266 | 0.00266688 |
64 | 0.55549858 | 0.37203294 | 0.06898520 | 0.00348328 |
65 | 0.52552523 | 0.38965352 | 0.08029298 | 0.00452826 |
66 | 0.49474217 | 0.40633638 | 0.09306135 | 0.00586010 |
67 | 0.46326585 | 0.42178271 | 0.10740092 | 0.00755051 |
68 | 0.43123143 | 0.43566818 | 0.12341295 | 0.00968745 |
69 | 0.39879339 | 0.44764485 | 0.14118334 | 0.01237841 |
70 | 0.36612594 | 0.45734441 | 0.16077531 | 0.01575434 |
71 | 0.33342294 | 0.46438259 | 0.18222022 | 0.01997425 |
72 | 0.30089756 | 0.46836541 | 0.20550639 | 0.02523064 |
73 | 0.26878130 | 0.46889735 | 0.23056555 | 0.03175580 |
74 | 0.23732239 | 0.46559188 | 0.25725642 | 0.03982931 |
75 | 0.20678340 | 0.45808485 | 0.28534510 | 0.04978664 |
76 | 0.17743793 | 0.44605116 | 0.31448165 | 0.06202926 |
77 | 0.14956616 | 0.42922523 | 0.34417227 | 0.07703633 |
78 | 0.12344911 | 0.40742607 | 0.37374651 | 0.09537832 |
79 | 0.09936129 | 0.38058747 | 0.40231862 | 0.11773261 |
80 | 0.07756165 | 0.34879432 | 0.42874235 | 0.14490167 |
81 | 0.05828228 | 0.31232578 | 0.45155806 | 0.17783387 |
82 | 0.04171481 | 0.27170652 | 0.46893125 | 0.21764743 |
83 | 0.02799390 | 0.22776704 | 0.47858117 | 0.26565789 |
84 | 0.01717756 | 0.18171454 | 0.47769830 | 0.32340960 |
85 | 0.00922370 | 0.13521556 | 0.46284907 | 0.39271166 |
86 | 0.00396252 | 0.09049229 | 0.42986627 | 0.47567891 |
87 | 0.00106401 | 0.05043412 | 0.37372319 | 0.57477869 |
88 | 0.00000000 | 0.01872659 | 0.28838951 | 0.69288390 |
89 | 0.00000000 | 0.00000000 | 0.16666667 | 0.83333333 |
90 | 0.00000000 | 0.00000000 | 0.00000000 | 1.00000000 |
Methodology -- Part 1
Following is how I did the math for the table above. First, let me define some variables.
- n = number of balls drawn.
- a = probability all three rows covered.
- b = probability at least two specific rows covered.
- c = probability at least one specific row covered.
Here are formulas for a, b, and c:
- a = combin(a,15)/combin(90,15)
- b = combin(a,10)/combin(90,10)
- c = combin(a,5)/combin(90,5)
Here are the formulas for exactly zero to three rows covered. For one and two rows, they can be any one or two.
- Exactly three rows covered = a.
- Exactly two rows covered = 3×(b-a).
- Exactly one row covered = 3×(c-2b+a).
- Exactly zero rows covered = 1 - (3c-3b+a).
Methodology -- Part 2
This section shows another way to get the probabilities in the table above.
The probability of covering m marks in c calls is combin(15,m)*combin(75,c-m)/combin(90,m). Using that, you can find the probability of covering a card as combin(75,90-m)/combin(90,m). To get the probability of covering 1 or 2 rows I determined the probability that m marks would cover 1 or 2 rows. The chart below shows those probabilities, which is based on basic probability.Rows Covered by Number of Marks
Marks | 0 Rows | 1 Row | 2 Rows | 3 Rows | Total |
---|---|---|---|---|---|
5 | 0.999001 | 0.000999 | 0 | 0 | 1 |
6 | 0.994006 | 0.005994 | 0 | 0 | 1 |
7 | 0.979021 | 0.020979 | 0 | 0 | 1 |
8 | 0.944056 | 0.055944 | 0 | 0 | 1 |
9 | 0.874126 | 0.125874 | 0 | 0 | 1 |
10 | 0.749251 | 0.24975 | 0.000999 | 0 | 1 |
11 | 0.549451 | 0.43956 | 0.010989 | 0 | 1 |
12 | 0.274725 | 0.659341 | 0.065934 | 0 | 1 |
13 | 0 | 0.714286 | 0.285714 | 0 | 1 |
14 | 0 | 0 | 1 | 0 | 1 |
15 | 0 | 0 | 0 | 1 | 1 |
Urgent Games
Urgent Games is a provider of games for Internet casinos, which offer 90-nuumber bingo. The player may choose between a 45, 55, or 65 number draw. The following three tables examine each option. Please excuse the limit of 15 significant digits in Excel.
45 Numbers
The following table shows the game by Urgent Games software with a 45 ball draw. The lower right cell shows an expected return of 48.36%.
45 Numbers
Rows/th> | Pays | Combinations | Probability | Return |
---|---|---|---|---|
3 | 100 | 781,879,430,625,944,000,000 | 0.000008 | 0.000753 |
2 | 50 | 171,356,221,250,483,000,000,000 | 0.001650 | 0.082520 |
1 | 5 | 8,313,931,625,579,050,000,000,000 | 0.080075 | 0.400373 |
0 | 0 | 95,341,351,561,293,300,000,000,000 | 0.918268 | 0.000000 |
Total | 103,827,421,287,553,000,000,000,000 | 1.000000 | 0.483645 |
55 Numbers
The following table shows the game by Urgent Games software with a 55 ball draw. The lower right cell shows an expected return of 57.37%.
65 Numbers
Rows/th> | Pays | Combinations | Probability | Return |
---|---|---|---|---|
3 | 50 | 2,942,618,815,403,660,000,000 | 0.000260 | 0.012992 |
2 | 10 | 164,874,003,096,150,000,000,000 | 0.014559 | 0.145589 |
1 | 2 | 2,350,584,069,921,270,000,000,000 | 0.207565 | 0.415129 |
0 | 0 | 8,806,187,820,277,450,000,000,000 | 0.777617 | 0.000000 |
Total | 0 | 11,324,588,512,110,300,000,000,000 | 1.000000 | 0.573711 |
65 Numbers
The following table shows the game by Urgent Games software with a 65 ball draw. The lower right cell shows an expected return of 64.08%.
65 Numbers
Rows/th> | Pays | Combinations | Probability | Return |
---|---|---|---|---|
3 | 20 | 52,588,547,141,148,900,000 | 0.004528 | 0.090565 |
2 | 2 | 932,475,551,941,065,000,000 | 0.080293 | 0.160586 |
1 | 1 | 4,525,207,169,948,350,000,000 | 0.389654 | 0.389654 |
0 | 0 | 6,103,141,366,229,710,000,000 | 0.525525 | 0.000000 |
Total | 0 | 11,613,412,635,260,300,000,000 | 1.000000 | 0.640805 |