Q: You want to get from the bank to the casino by bus. There are two buses that make a loop stopping at both places continuously. It takes one bus $1 / 2$ hour to complete a loop and the other bus $3 / 4$ hour. You have no idea where they are in their loops. What is the average waiting time until the next bus?

A: $\quad 7 / 36$ hour $=112 / 3$ minutes $=11$ minutes, 40 seconds.

Solution:

Let $\mathrm{x}=$ time until 30-minute bus arrives.
Let $\mathrm{y}=$ time until 45 -minute bus arrives.

Consider the following diagram showing all possible combinations of x and y. The yellow region represents those combinations of x and y where bus y arrives first. The blue region represents those combinations where bus x arrives first. Note that the blue region is larger, because x makes a loop in less time, and thus comes by the bank more often.

First, let's calculate the total wait time if $x<y$. In other words, the yellow region. That can be expressed as:
$\int_{0}^{0.5} \int_{0}^{x} x d y d x=$
$\int_{0}^{0.5} x y$ from 0 to $x d y=$
$\int_{0}^{0.5} x^{2} d x=$
$\frac{x^{3}}{3}$ from 0.5 to $0=$
$(1 / 8) / 3=1 / 24$

Second, let's calculate the total wait time if $x>y$. In other words, the blue region. That can be expressed as:

$$
\begin{aligned}
& \int_{0}^{0.5} \int_{x}^{0.75} x d y d x= \\
& \int_{0}^{0.5} x y \text { from x to } 0.75 d x=
\end{aligned}
$$

$$
\int_{0}^{0.5} x(0.75-x) d x=
$$

$$
\int_{0}^{0.5} 0.75 x-x^{2} d x=
$$

$$
\begin{aligned}
& \frac{3 x^{2}}{8}-\frac{x^{3}}{3} \text { from } 0 \text { to } 0.5= \\
& \frac{3}{32}-\frac{1}{24}=\frac{5}{96}
\end{aligned}
$$

Next, let's add the yellow and blue areas:

Next, let's divide by the total area of $3 / 8$ to get an average wait time:

$\frac{7}{96} / \frac{3}{8}=\frac{7}{36}$ hours

$7 / 36$ hours $=112 / 3$ minutes $=11$ minutes, 40 seconds .

