Question

You are given three parallel panes of glass. Each pane will transmit 70%, reflect 20%, and absorb 10% of the light that falls on it.

If a light source is placed on one side of the three panes, what is the total percentage of light that passes through to the other side?

Answer
$343 / 902=\sim 0.380266075388=\sim 38.03 \%$.

Solution

Let's call the panes of glass 1,2 , and 3 , where the light starts by going through pane 1 first and whose goal is to go through pane 3.

Let:
$a=$ Portion of light that will escape traveling from pane 1 to pane 2.
$b=$ Portion of light that will escape traveling from pane 2 to pane 1 (in other words going backwards).
$\mathrm{c}=$ Portion of light that will escape traveling from pane 2 to pane 3.
$d=$ Portion of light that will escape traveling from pane 3 to pane 2 (in other words going backwards).

We can set up these equations:
$a=0.7 c+0.2 b$
$\mathrm{b}=0.2 \mathrm{a}$
$\mathrm{c}=0.7+0.2 \mathrm{~d}$
$d=0.7 b+0.2 c$

We have four equations and four unknowns, thus we have enough information to solve for all variables, but we only need to for a.

We can set up these equations as a matrix:

1	-0.2	-0.7	0	0
-0.2	1	0	0	0
0	0	1	-0.2	0.7
0	-0.7	-0.2	1	0

Let's call matrix M :

1	-0.2	-0.7	0
-0.2	1	0	0
0	0	1	-0.2
0	-0.7	-0.2	1

Let's call matrix N :

0	-0.2	-0.7	0
0	1	0	0
0.7	0	1	-0.2
0	-0.7	-0.2	1

$\operatorname{determ}(M)=0.902$
$\operatorname{determ}(\mathrm{N})=0.490$
$a=\operatorname{determ}(N) / \operatorname{determ}(M)=0.49 / 0.902=490 / 902=\sim 0.543237251$
However, not all the light makes it to state a. 70% of it, to be exact. So, the ratio of all the light to the light that escapes pane 3 is 0.7 * 490/902 = 343/902 $=\sim 38.03 \%$.

