Q: You have a 5' ladder. You wish to lean it against a wall as high as possible. However, there is a $1 \times 1 \times 1$ cubic foot box you must put the ladder over. No, you can't move the box. What is the maximum height the top of the ladder can reach?
A. $(1+\sqrt{26}+\sqrt{23-2 \sqrt{26}}) / 2=\sim 4.838501$

Solution:

First, let's let:
a = distance from bottom of ladder to the wall
$b=$ height of top of ladder from the ground

From similar triangles we know:
$b / a=(b-1) / 1$
Cross multiply:
$b=a b-a$
$a+b=a b$

From the Pythagorean formula we know:
$a^{2}+b^{2}=25$
$(a+b)^{2}-2 a b=25$
Let $\mathrm{c}=25$
$c^{2}-2 c-25=0$

Using the quadratic formula, we get:
$c=a b=1+\sqrt{26}=\sim 6.099020$

Recall, $a+b=a b$
So, $a+b=1+\sqrt{26}$
$b=1+\sqrt{26}-a$

We also have:
$a b=1+\sqrt{26}$
$a(1+\sqrt{26}-a)=1+\sqrt{26}$
Let $d=1+\sqrt{26}$
$a+(d-a)=\mathrm{d}$
$a \mathrm{~d}-a^{2}=d$
$a^{2}-a d+d=0$

Using the quadratic formula, we get:

$$
a=\left(d+/-\sqrt{d^{2}-4 d}\right) / 2
$$

Substitute $d=1+\sqrt{26}$

$$
a=\frac{1+\sqrt{26} \pm \sqrt{\left(1+{\sqrt{26})^{2}-4 \times 4(1+\sqrt{26})}_{-}^{2}\right.}}{2}
$$

After some simplification:
$a=\frac{1+\sqrt{26} \frac{ \pm}{-} \sqrt{23-2 \sqrt{26}}}{2}$
Of the + and - , we should choose the -, because $a<b$, because we want the ladder to stand up as high as possible. So,
$a=\frac{1+\sqrt{26}-\sqrt{23-2 \sqrt{26}}}{2}=1.260518$

Knowing a and that $a+b=1+\sqrt{26}$, simple algebra gives us:

$$
b=\frac{1+\sqrt{26}-\sqrt{23-2 \sqrt{26}}}{2}=\sim 4.838501
$$

