Question: On a double-zero roulette wheel, how many spins will it take, on average, to see five reds or five blacks in a row? Assume the last spin was a green.

Answer: $118098 / 4592395=\sim 38.886306$

Solution:

Let's define some states the game could be in, each of these states shall stand for the expected number of additional spins to see five in a row.
a = Expected more spins if the last spin was green.
$\mathrm{b}=$ Expected more spins if the last spin were red or black, preceded by a different color.
$\mathrm{c}=$ Expected more spins if the last two spins were two consecutive reds or blacks, preceded by a different color.
$d=$ Expected more spins if the last three spins were three consecutive reds or blacks, preceded by a different color.
$\mathrm{e}=$ Expected more spins if the last four spins were two consecutive reds or blacks, preceded by a different color.

If the last spin were green, then there is a $36 / 38$ chance we will advance to state b and $2 / 38$ we will stay in state a. We can represent that as:
$a=1+(36 / 38) b+(2 / 38) a$
Using the same kind of logic that each spin will either advance the state if we get the same color, go to state b if we get the opposite color or bring it back to state a if we get a green:

$$
\begin{aligned}
& b=1+(2 / 38) a+(18 / 38) b+(18 / 38) c \\
& c=1+(2 / 38) a+(18 / 38) b+(18 / 38) d
\end{aligned}
$$

$d=1+(2 / 38) a+(18 / 38) b+(18 / 38) e$
$e=1+(2 / 38) a+(18 / 38) b$
Let's multiply all five equations by 38 and simplify:
$36 a=38+36 b$
$20 b=38+2 a+18 c$
$38 c=38+2 a+18 b+18 d$
$38 d=38+2 a+18 b+18 e$
$38 e=38+2 a+18 b$

We can express these five equations in matrix form as:

36	-36	0	0	0	38
-2	20	-18	0	0	38
-2	-18	38	-18	0	38
-2	-18	0	38	-18	38
-2	-18	0	0	38	38

Our goal is to solve for a.

Recall from high school linear algebra, that this is the determinant of matrix X divided by the determinant of matrix Y, where:
$X=$

38	-36	0	0	0
38	20	-18	0	0
38	-18	38	-18	0
38	-18	0	38	-18
38	-18	0	0	38

$Y=$

36	-36	0	0	0
-2	20	-18	0	0
-2	-18	38	-18	0
-2	-18	0	38	-18
-2	-18	0	0	38

Fortunately, Excel can do determinants with the DERTERM(range of array) function.

In this case:
DETERM $(X)=146956640$
$\operatorname{DETERM}(\mathrm{Y})=3779136$
Our answer is thus $146956640 / 3779136$. Dividing both sides by the greatest common denominators of 32 we get 118098/4592395 $=\sim 38.886306$

