Question: Solve for x.
$9^{x}+12^{x}=16^{x}$

Solution:

Divide both sides by 9^{x}
$9^{x} / 9^{x}+12^{x} / 9^{x}=16^{x} / 9^{x}$
$1+(12 / 9)^{x}=(16 / 9)^{x}$
$1+(4 / 3)^{x}=\left((4 / 3)^{2}\right)^{x}$
$1+(4 / 3)^{x}=\left((4 / 3)^{x}\right)^{2}$
Let $\mathrm{y}=(4 / 3)^{\mathrm{x}}$
$1+y=y^{2}$
Solving for y, using the quadratic equations, gives us the golden ratio...
$y=(1+\operatorname{sqrt}(5)) / 2=\sim 1.67272093446233$
Recall that $\mathrm{y}=(4 / 3)^{\mathrm{x}}$
$(4 / 3)^{x}=(1+\operatorname{sqrt}(5)) / 2$
Take the log of each side:
$\log \left((4 / 3)^{x}\right)=\log ((1+\operatorname{sqrt}(5)) / 2)$
$x * \log (4 / 3)=\log ((1+\operatorname{sqrt}(5)) / 2)$
$x=\log ((1+\operatorname{sqrt}(5)) / 2) / \log (4 / 3)$
$x=(\log (1+\operatorname{sqrt}(5))-\log (2)) /(\log (4)-\log (3))$
$=\sim 1.67272093446233$

