Question: In the diagram below, the three circles have radius 1. They are inscribed in a square of the least possible size. What is the length of the side of the square?

$$
\text { Answer: } 2+\frac{\sqrt{2}+\sqrt{6}}{2}=\sim 3.931852
$$

Solution:

Consider the diagram below. The diagonal line of the square is supposed to be straight, but my artwork is imperfect.

Consider the triangle ABC.
$A B=2$, because it consists to the radius of two of the circles.

Let $t=$ Angle $A B C=45^{\circ}-30^{\circ}=15^{\circ}$
$\operatorname{Cos}(15)=B C / A B=B C / 2$
$B C=2 \times \cos (15)=\sim 1.931852$
The rest of the side consists of the radii of two of the circles.
Thus the full side length is $2+2 \times \cos (15)=\sim 3.931852$
However, let's express without the $\cos (15)$ part.
Recall:
$\operatorname{Cos}(x-y)=\cos (x) \times \cos (y)+\sin (x) \times \sin (y)$
$\operatorname{Cos}(15)=\operatorname{Cos}(45-30)=\cos (45) \times \cos (30)-\sin (45) \times \sin (30)$
$=\frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} * \frac{1}{2}$
$=\frac{\sqrt{6}+\sqrt{2}}{4}$
The answer is thus: $2+\frac{\sqrt{6}+\sqrt{2}}{2}$

