Q: The square above has side length 2. One arc is of a circle of radius 1 and the other radius 2 . What is the area of the red region? It is allowed to express your answer in trig functions.

A: $\quad 4^{*}\left(\arctan (2)+4^{*} \arctan (1 / 2)-2\right)=\sim 3.84695661518926$

S: Consider the following diagram:

Since $A B=4$ and $A B$ and $A D$ are both the radii of the circle with center A and $A B=4$, then $A D=4$.

Since $B C=2$ and $B C$ and $C D$ are both the radii of the circle with center C and $B C=2$, then $C D=2$
$A C$ is the hypotenuse of triangles $A B C$ and $A C D$.

We have shown that triangles ABC and ACD both have sides of the same length, thus must be the same size triangle.

The area of triangle $A B C=$ base*height $/ 2=2 * 4 / 2=4$.

Since $A B C$ and $A C D$ are equivalent triangles, $A C D$ must also have area 4.

The area of the kite consisting of the yellow + red + blue regions is the sum of the areas of triangles $A B C$ and $A C D=4+4=8$.

Angle $B A C=$ Angle $C A D=\arctan (2 / 4)=\arctan (1 / 2)$. Thus, angle $B A D=$ $2 \arctan (1 / 2)$.

The area of the whole circle with center A is $\pi * 4^{2}$.

The ratio of the whole circle centered at A to the slice consisting of the yellow and red sections is
$2 \arctan (1 / 2) /(2 \pi)=\arctan (1 / 2) / \pi$

The area of the yellow + red slice is $\pi * 4^{2 *} \arctan (1 / 2) / \pi=16^{*} \arctan (1 / 2)$.

To review:

Yellow + red + blue = 8
Yellow + red $=16^{*} \arctan (1 / 2)$
Thus, blue $=8-16^{*} \arctan (1 / 2)$

Next, consider the red + blue area.

Angle $B C A=$ angle $D C A=\tan (2)$.

The area of the whole circle with center C is $\pi * 2^{2}$.

The ratio of the whole circle centered at C to the slice consisting of the blue and red sections is
$2 \arctan (2) /(2 \pi)=\arctan (2) / \pi$

The area of the blue + red slice is $\pi * 2^{2} * \arctan (2) / \pi=4^{*} \arctan (2)$.

To review:

Blue $=8-16^{*} \arctan (1 / 2)$.

Red + blue $=$ 4* $^{*} \arctan (2)$.

Thus, red $=4^{*} \arctan (2)-\left(8-16^{*} \arctan (1 / 2)\right)$
$=4^{*}\left(\arctan (2)-2+4^{*} \arctan (1 / 2)\right)=\sim 3.84695661518926$.

This problem taken from the YouTube channel "Mind Your Decisions."

Link: https://www.youtube.com/watch?v=6YvIHt8dIHQ

