Question

$1+2+3+\ldots+n=$

Answer
$1+2+3+\ldots+\mathrm{n}=\frac{n(n+1)}{2}$

Solution

If n is even:
$1+2+3+\ldots+n=$
$(1+n)+(2+(n-1))+(3+(n-2))+\ldots$
All these terms sum to $\mathrm{n}+1$ and there are $\mathrm{n} / 2$ such terms. Thus, the sum is $(\mathrm{n} / 2)^{*}(\mathrm{n}+1)=\frac{n(n+1)}{2}$

If n is odd:
Let's omit the last term for now, leaving us with an even number. We can use the logic above, taking ($n-1$)/2 pairs of sums of $n+1$ to get a total of: $(n-1)^{*} n / 2$. = $\left(n^{2}-n\right) / 2$. Now let's add that last term of n :
$\left(n^{2}-n\right) / 2+n=$
$\left(n^{2}-n\right) / 2+2 n / 2=$
$\left(n^{2}+n\right) / 2=$
$\frac{n(n+1)}{2}$

So, the answer is $n(n+1) / 2$ whether n is odd or even.

