$$
\begin{aligned}
& \int_{-\pi / 4}^{\pi / 4} e^{-i x}= \\
& \left.\frac{-e^{-i x}}{i}\right]_{-\frac{\pi}{4}}^{+\frac{\pi}{4}}= \\
& \left.\frac{-i e^{-i x}}{-1}\right]_{-\frac{\pi}{4}}^{+\frac{\pi}{4}}= \\
& \left.i e^{-i x}\right]_{-\frac{\pi}{4}}^{+\frac{\pi}{4}}=
\end{aligned}
$$

Here comes the rabbit out of the hat. Recall Euler's formula (link to https://en.wikipedia.org/wiki/Euler\'s_formula), which says:

$$
e^{i x}=\cos (x)+i \times \sin (x)
$$

Applying that to the function at hand we have:

$$
\begin{aligned}
& \left.i(\cos (-x)+i \times \sin (-x)]_{-\frac{\pi}{4}}^{+\frac{\pi}{4}}\right)= \\
& i\left(\cos \left(-\frac{\pi}{4}\right)+i \times \sin \left(-\frac{\pi}{4}\right)-\left[\cos \left(-\frac{\pi}{4}\right)+i \times \sin \left(-\frac{\pi}{4}\right)\right]\right)= \\
& i\left(\frac{\sqrt{2}}{2}+i \times-\frac{\sqrt{2}}{2}-\left[\frac{\sqrt{2}}{2}+i \times \frac{\sqrt{2}}{2}\right]\right)= \\
& i\left(\frac{\sqrt{2}}{2}+i \times-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}-i \times \frac{\sqrt{2}}{2}\right)= \\
& i\left(-i \times \frac{\sqrt{2}}{2}-i \times \frac{\sqrt{2}}{2}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& i\left(-2 i \times \frac{\sqrt{2}}{2}\right)= \\
& i(-i \times \sqrt{2}) \\
& -i^{2} \times \sqrt{2} \\
& -(-1) \times \sqrt{2}= \\
& \sqrt{2}=\sim \text { apx. } 0.707106781186548
\end{aligned}
$$

