Problem: A player plays video poker. The probability of hitting a royal flush on any hand is $p$. What is the probability that in $n$ hands there will be no "drought" of $d$ consecutive hands without a royal flush?

Solution 1. Assume that the player plays at a constant speed, and choose the unit of time such that expected number of royal flushes per unit time is 1 .

Let $X_{i}$ be the time of the $i$ th royal flush, we can model this with the jump times of a homogeneous Poisson process with parameter 1. We can consider $X_{i}(i=1,2,3, \ldots)$ as a sequence of random variables such that $X_{1}, X_{2}-X_{1}$, $X_{3}-X_{2}$, etc., are independent exponentially distributed random variables with parameter 1.

The question can be restated in these term as follows. Given $k$ and $x$, what is the probability that $X_{1}, X_{2}-X_{1}, \ldots, X_{m}-X_{m-1}$ and $x-X_{m}$ are all at most $k$, where $X_{m}$ is the largest $m$ such that $X_{m}<x$ ? (In the original question, $d=200000, n=1000000, p=1 / 40391$, so $k=200000 / 40391$, $x=1000000 / 40391$.)

Let this probability be $f(x)$. Clearly $f(x)=1$ if $0 \leq x \leq k$. If $x>k$, then consider $X_{1}$. We must have $X_{1} \leq k$, and then $X_{i}-X_{i-1}(i=2,3, \ldots, m)$ and $x-X_{m}$ must all be at most $k$, which has probability $f\left(x-X_{1}\right)$. This gives the following equation for $f(x)$ if $x>k$ :

$$
\begin{equation*}
f(x)=\int_{0}^{k} e^{-t} f(x-t) d t \tag{1}
\end{equation*}
$$

By using the Dirac $\delta$-function, this can be rewritten in a form valid for all $x$ :

$$
\begin{equation*}
f(x)=\int_{0}^{k} e^{-t}(f(x-t)+\delta(x-t)) d t \tag{2}
\end{equation*}
$$

(The $\delta$-function is not a "real" function, it is a so-called generalized function or distribution. It can be considered as a notational convenience, it is defined by the property that $\int_{-\infty}^{\infty} g(x) \delta(x) d x=g(0)$ for any function $g$. In the above equation it adds $e^{-x}$ to the right-hand side if $0 \leq x \leq k$ to make it correct for all $x>0$.)

The Laplace transform $\mathcal{L}(g)$ of a function $g(t)$ defined on $[0, \infty)$ is

$$
\mathcal{L}(g)(s)=\int_{0}^{\infty} g(t) e^{-s t} d t
$$

Let $h(x)=e^{-x}$ if $0 \leq x \leq k$, and 0 otherwise. Then the right-hand side of (2) is the convolution of $h(x)$ with $f(x)+\delta(x)$, and it is a well-known property of Laplace transforms that the Laplace transform of the convolution is the product of the Laplace transforms of the factors.. Hence we obtain

$$
\mathcal{L}(f)=\mathcal{L}(h)(\mathcal{L}(f)+\mathcal{L}(\delta)) .
$$

$\mathcal{L}(\delta)=1$ and $\mathcal{L}(h)=\frac{1-e^{-k(1+s)}}{1+s}$. We can solve for $\mathcal{L}(f)$,

$$
\begin{equation*}
\mathcal{L}(f)=\frac{\mathcal{L}(h)}{1-\mathcal{L}(h)}=\frac{-1+e^{k(1+s)}}{1+e^{k(1+s)} s} \tag{3}
\end{equation*}
$$

The middle expression can be expanded into a power series, so $\mathcal{L}(f)=$ $\sum_{r=1}^{\infty}[\mathcal{L}(h)]^{r}$. The Laplace transform converts convolutions to products, therefore by inverting it we get $f(x)=\sum_{r=1}^{\infty} *^{r} h(x)$, where $*^{r} h(x)$ is the $r$-fold convolution of $h$ with itself. This seems to be the most explicit form of $f(x)$ but it does not appear to be useful for calculations.

Instead of an exact form we need to find an approximation. The asymptotic behaviour of $f(x)$ as $x \rightarrow \infty$ is determined by the poles of $\mathcal{L}(f)$, the places where $\mathcal{L}(f)$ is not defined because the denominator is 0 . Both real and complex values need to be considered. Near a real pole $s=a, \mathcal{L}(f)$ behaves like $A /(s-a)$ for some constant $A$, and this corresponds to a term $A e^{a x}$ in $f(x)$. Complex poles come in conjugate pairs, $b \pm c i$, and their joint effect is a term of the form $e^{b x}(\alpha \cos (c x)+\beta \sin (c x))$.

We need to find where the denominator of $\mathcal{L}(f)$ vanishes. $1+e^{k(1+s)} s=0$ cannot be solved for $s$ using standard functions. It can be rearranged to the form

$$
\begin{equation*}
k s e^{k s}=-k e^{-k} \tag{4}
\end{equation*}
$$

$s=-1$ is clearly a solution, but there is no pole there unless $k=1$, because the numerator of $\mathcal{L}(f)$ also vanishes. There is a function called productlog, sometimes denoted by $W$, which is the inverse of $z e^{z}$, so that it satisfies $z=W(z) e^{W(z)}$. Let

$$
a=\frac{W\left(-k e^{-k}\right)}{k},
$$

where we are using the non-standard convention that out of the two possible real values of $W$ we take the one not equal to $-k$, unless $k=1$, in which case the only possible value is $-1 . s=a$ and $s=-1$ are the only real solutions of $1+e^{k(1+s)} s=0$ and $\mathcal{L}(f)$ has a pole at $s=a$.

If $k=1$ then $a=-1$, if $k \neq 1$, then $k$ can be expressed in terms of $a$ as

$$
k=\frac{-\ln (-a)}{1+a}
$$

For practical purposes $a$ can be calculated by solving this equation numerically to the required accuracy.

We now claim that $f(x)$ is asymptotically equal to $A e^{a x}$ for some $A$. The only real pole of $\mathcal{L}(f)$ is at $s=a$, if the dominant term of $f(x)$ came from a pair of complex poles, then it would be of the form $e^{b x}(\alpha \cos (c x)+\beta \sin (c x))$, but since it oscillates and changes sign, it cannot be the dominant term in $f(x)$ which is positive and monotonically decreasing. (This might also follow from certain properties of the complex values of the $W$ function, which may be known to people who deal with it more often than I do.)

The coefficient $A$ can be determined as

$$
A=\lim _{s \rightarrow a}(s-a) \mathcal{L}(f)(s)=\lim _{s \rightarrow a} \frac{(s-a)\left(-1+e^{k(1+s)}\right)}{1+e^{k(1+s)} s} .
$$

If $k \neq 1$, L'Hôpital's rule gives

$$
A=\frac{(1+a)^{2}}{1+a-a \ln (-a)}=\frac{1+a}{1+a k}
$$

while if $k=1$, L'Hôpital's rule needs to be applied twice to get $A=2$. Therefore if $k \neq 1$,

$$
f(x) \approx \frac{1+a}{1+a k} e^{a x}
$$

while if $k=1$,

$$
f(x) \approx 2 e^{-x}
$$

## Summary

Let $p$ be the probability of the royal flush, $d$ the length of the "drought", $n$ the total number of hands played.

1. Set $k=d p, x=n p$.
2. If $k=1$ then let $a=-1$, otherwise find $a$ such that $k=-\ln (-a) /(1+a)$. ( $a$ is a negative number, if $k>1$ then $-1<a<0$, if $k<1$ then $a<-1$, and $a$ needs to be calculated to high accuracy.)
3 . If $k=1$, then let $A=2$, otherwise let $A=(1+a) /(1+a k)$.
3. The probability of no "drought" of length $d$ in $n$ hands is approximately $A e^{a x}$.

In the original problem, $k=200000 / 40391=4.9516, x=1000000 / 40391=$ 24.758. Hence $a=-0.00733363, A=1.03007$, and the probability of no "drought" is $f(x) \approx 0.859042$, and the probability of there being a"drought" is $1-f(x) \approx 0.140958$.

## Solution 2.

Let $b_{n}$ be the probability that in $n$ hands of video poker there is no royal flush "drought" of length $d . \quad b_{0}=b_{1}=\ldots=b_{d-1}=1$, and for $n \geq d$, $b_{n}=p \sum_{i=1}^{d}(1-p)^{i-1} b_{n-i}$, this is the discrete equivalent of (1).

Let

$$
\phi(x)=x^{d}-p \sum_{i=1}^{d}(1-p)^{i-1} x^{d-i}=\frac{x^{d+1}-x^{d}+p(1-p)^{d}}{x-(1-p)} .
$$

It can be verified that $\phi(x)$ has no multiple roots, so the exact formula is of the form $b_{n}=\sum_{i=1}^{d} \alpha_{i} x_{i}^{n}$, where the $x_{i}(i=1,2, \ldots, d)$ are the roots of the characteristic equation $\phi(x)=0$.

The coefficients can be determined by using Joshua Green's idea from http://www.princeton.edu/~jvgreen/RandomEvent.pdf as

$$
\alpha_{i}=\frac{(1-p)^{d}}{\phi^{\prime}\left(x_{i}\right)\left(1-x_{i}\right)} .
$$

$\phi(x)$ has a root of maximum modulus close to but slightly less than 1 , call it $x_{1}$. For large $n$, all the terms in $b_{n}$ apart from $\alpha_{1} x_{1}^{n}$ are negligible, and

$$
b_{n} \approx \alpha_{1} x_{1}^{n}=\frac{(1-p)^{d} x_{1}^{n}}{\phi^{\prime}\left(x_{1}\right)\left(1-x_{1}\right)}
$$

Using the numbers in the original question, $x_{1}=0.9999998184456574$ and $\alpha_{1}=1.03007$, hence $b_{1000000}=1.03007 \times 0.9999998184456574^{1000000}=$ 0.859050 is the probability of no "drought" of length 200000 in 1000000 hands of video poker, in excellent agreement with the previous solution.

While this second method may give a more accurate result in theory, calculating $x_{1}$ to sufficient accuracy is not simple.

