Q: What is the expected return of the Replay side bet in craps. The pay table is as follows (win on a "to one" basis):

| | EVENT |
| :--- | ---: | PAYS \(~\left(\begin{array}{r|r|}\hline Point of 4 or 10 achieved four or more times \& 1000 \\

\hline Point of 5 or 9 achieved four or more times \& 500 \\
\hline Point of 4 or 10 achieved three times \& 120 \\
\hline Point of 6 or 8 achieved four or more times \& 100 \\
\hline Point of 5 or 9 achieved three times \& 95 \\
\hline Point of 6 or 8 achieved three times \& 70 \\
\hline\end{array}\right.\)

A: The key to solving this problem is that the answer is the same whether there is one significant discrete event at a time (any point being won or lost) or they happen at a point in time, with random periods of no events in between. Either way, there is a particular order of events that determines the outcome of the bet.

The probability of any significant event, given that one has happened is as follows:

Point of 4 or 10 win $=1 / 24$.
Point of 5 or 9 win $=1 / 15$.
Point of 6 or 8 win $=25 / 264$
Any seven-out = 98/165

We shall use integral calculus to solve for each event. In each case, the mean time between significant events is 1 . Time since the bet started is x. Any given probability is the sum from 0 to infinity that the first seven-out to occur happened at exactly that moment with the needed winning conditions happening before.

To do the integration, I recommend the calculator at www.integralcalculator.com. You can find the integrals in text form at the end.
$\mathrm{a}=$ Probability point of 4 or 10 , but not both, achieved at least four times $=$ 2 * (1-pr(point of 4 or 10 achieved 0 to 3 times) * pr(point of 4 or 10 achieved 0 to 3 times) * seven-out achieved 0 times * probability of seven-out, given a point made or lost. =
$\int_{0}^{\infty} 2 \times\left(1-e^{-\frac{x}{24}}\left(1+\frac{x}{24}+\frac{\left(\frac{x}{24}\right)^{2}}{2!}+\frac{\left(\frac{x}{24}\right)^{3}}{3!}\right)\right) \times\left(e^{-\frac{x}{24}}\left(1+\frac{x}{24}+\frac{\left(\frac{x}{24}\right)^{2}}{2!}+\right.\right.$ $\left.\left.\frac{\left(\frac{x}{24}\right)^{3}}{3!}\right)\right) \times e^{-\frac{98 x}{165}} \times \frac{98}{165} d x=$

65201685378467494355681875/1766853353929146219986463522783
$=$ apx. $3.6902714780188938 \times 10^{-5}$
$b=$ Probability point of both 4 and 10 achieved at least four times $=$ (1-pr(point of 4 or 10 achieved 0 to 3 times) * pr(point of 4 or 10 achieved 0 to 3 times) * seven-out achieved 0 times * probability of seven-out, given a point made or lost. =

$$
\int_{0}^{\infty}\left(1-e^{-\frac{x}{24}}\left(1+\frac{x}{24}+\frac{\left(\frac{x}{24}\right)^{2}}{2!}+\frac{\left(\frac{x}{24}\right)^{3}}{3!}\right)\right)^{2} \times e^{-\frac{98 x}{165}} \times \frac{98}{165} d x
$$

= 56262929147846029296875/3533706707858292439972927045566 =
apx. $1.5921788025794 \times 10^{-8}$

Probability point of 4 and/or 10 achieved at least four times $=a+b=$ $3.6918636568215 \times 10^{-5}$
c= Probability point of 5 or 9 , but not both, achieved at least four times, and 4 and 10 both achieved 3 or less times. =

2 * (1-pr(point of 5 or 9 achieved 0 to 3 times) * pr(point of 5 or 9 achieved 0 to 3 times) * pr(4 or 10 achieved 0 to 3 times) ${ }^{\wedge} 2$ * seven-out achieved 0 times * probability of seven-out, given a point made or lost. =

$$
\begin{aligned}
& \int_{0}^{\infty} 2 \times\left(1-e^{-\frac{x}{15}}\left(1+\frac{x}{15}+\frac{\left(\frac{x}{15}\right)^{2}}{2!}+\frac{\left(\frac{x}{15}\right)^{3}}{3!}\right)\right) \times\left(e ^ { - \frac { x } { 1 5 } } \left(1+\frac{x}{15}+\frac{\left(\frac{x}{15}\right)^{2}}{2!}+\right.\right. \\
& \left.\left.\frac{\left(\frac{x}{15}\right)^{3}}{3!}\right)\right) \times\left(e^{-\frac{x}{24}}\left(1+\frac{x}{24}+\frac{\left(\frac{x}{24}\right)^{2}}{2!}+\frac{\left(\frac{x}{24}\right)^{3}}{3!}\right)\right)^{2} \times e^{-\frac{98 x}{165}} \times \frac{98}{165} d x=
\end{aligned}
$$

$632620488252916242831069804557124990244391362510561792 / 30663664685160340933813198225$ $88282963792443265015898546875=$ apx. 0.0002063094854279021
$d=$ Probability point of both 5 or 9 achieved at least four times, and 4 and 10 both achieved 3 or less times. =
(1-pr(point of 5 or 9 achieved 0 to 3 times) ^2 ${ }^{*} \operatorname{pr}(4$ or 10 achieved 0 to 3 times)^2 * seven-out achieved 0 times * probability of seven-out, given a point made or lost. =

$$
\begin{aligned}
& \int_{0}^{\infty}\left(1-e^{-\frac{x}{15}}\left(1+\frac{x}{15}+\frac{\left(\frac{x}{15}\right)^{2}}{2!}+\frac{\left(\frac{x}{15}\right)^{3}}{3!}\right)\right)^{2} \times\left(e ^ { - \frac { x } { 2 4 } } \left(1+\frac{x}{24}+\frac{\left(\frac{x}{24}\right)^{2}}{2!}+\right.\right. \\
& \left.\left.\frac{\left(\frac{x}{24}\right)^{3}}{3!}\right)\right)^{2} \times e^{-\frac{98}{165}} \times \frac{98}{165} d x=
\end{aligned}
$$

$$
4432779172318394681215006889833826206938632308352870259873720186109952 / 109339
$$ $40823420496140413926170733638530811352664699776845348274954672408453125=$ apx. $4.054145933205879 \times 10^{-7}$

Prob 5 and/or $94+$ times and no higher win $=c+d=0.000206714900021223$.
e = Probability point of 4 or 10, but not both, achieved exactly three times, and 5 or 9 both achieved 3 or less times $=$

2 * pr(point of 4 or 10 achieved 3 times) * pr(point of 4 or 10 achieved 2 or less times) * pr(point of 5 or 9 achieved 0 to 3 times)^2 * seven-out achieved 0 times * probability of seven-out, given a point made or lost. =

$$
\begin{aligned}
& \int_{0}^{\infty} 2 \times e^{-\frac{x}{24}} \times \frac{\left(\frac{x}{24}\right)^{3}}{3!} \times\left(e^{-\frac{x}{24}}\left(1+\frac{x}{24}+\frac{\left(\frac{x}{24}\right)^{2}}{2!}\right)\right) \times\left(e ^ { - \frac { x } { 1 5 } } \left(1+\frac{x}{15}+\frac{\left(\frac{x}{15}\right)^{2}}{2!}+\right.\right. \\
& \left.\left.\frac{\left(\frac{x}{15}\right)^{3}}{3!}\right)\right)^{2} \times e^{-\frac{98 x}{165}} \times \frac{98}{165} d x= \\
& =18371053133887106656384997 / 35190493577512864651856265625 \\
& =\text { apx. } 0.0005220459068987433
\end{aligned}
$$

$\mathrm{f}=$ Probability point of 4 and 10 achieved exactly three times, and 5 or 9 both achieved 3 or less times =
$\operatorname{pr}\left(\right.$ point of 4 or 10 achieved 3 times) ${ }^{\wedge} 2 * \operatorname{pr}($ point of 5 or 9 achieved 0 to 3 times)^2 ${ }^{*}$ seven-out achieved 0 times * probability of seven-out, given a point made or lost. =

$$
\int_{0}^{\infty}\left(e^{-\frac{x}{24}} \times \frac{\left(\frac{x}{24}\right)^{3}}{3!}\right)^{2} \times\left(e^{-\frac{x}{15}}\left(1+\frac{x}{15}+\frac{\left(\frac{x}{15}\right)^{2}}{2!}+\frac{\left(\frac{x}{15}\right)^{3}}{3!}\right)\right)^{2} \times e^{-\frac{98}{165}} \times \frac{98}{165} d x=
$$

1407672312689881759266669/1506153125117550607099448168750
$=a p x .9 .346143424693404 * 10^{\wedge}-7$

Probability of 4 and/or 10 achieved exactly three times and no higher win $=e+f=$ 0.00052298052124121200.
$g=$ Probability point of 6 or 8 , but not both, achieved 4 or more times, points of 5 and 9 both achieved three or less times, and points of 4 and 10 both achieved two or less times =
$\int_{0}^{\infty} 2 \times\left(1-e^{-\frac{25 x}{264}}\left(1+\frac{25 x}{264}+\frac{\left(\frac{25 x}{264}\right)^{2}}{2!}+\frac{\left(\frac{25 x}{264}\right)^{3}}{3!}\right)\right) \times\left(e^{-\frac{25}{264}}\left(1+\frac{25 x}{264}+\frac{\left(\frac{25 x}{264}\right)^{2}}{2!}+\right.\right.$ $\left.\left.\frac{\left(\frac{25}{264}\right)^{3}}{3!}\right)\right) \times\left(e^{-\frac{x}{15}}\left(1+\frac{x}{15}+\frac{\left(\frac{x}{15}\right)^{2}}{2!}+\frac{\left(\frac{x}{15}\right)^{3}}{3!}\right)\right)^{2} \times\left(e^{-\frac{x}{24}}\left(1+\frac{x}{24}+\frac{\left(\frac{x}{24}\right)^{2}}{2!}\right)\right)^{2} \times$ $e^{-\frac{98 x}{165}} \times \frac{98}{165} d x=$
$464463634046049935049755642596110138619810984882625 / 93080375389750$ $11742105498920371662196076747088233234432=$ apx. 0.0006945033909648271
$h=$ Probability point of both 6 and 8 achieved 4 or more times, points of 5 and 9 both achieved three or less times, and points of 4 and 10 both achieved two or less times =

$$
\begin{aligned}
& \int_{0}^{\infty}\left(1-e^{-\frac{25 x}{264}}\left(1+\frac{25 x}{264}+\frac{\left(\frac{25 x}{264}\right)^{2}}{2!}+\frac{\left(\frac{25}{264}\right)^{3}}{3!}\right)\right)^{2} \times\left(e ^ { - \frac { x } { 1 5 } } \left(1+\frac{x}{15}+\frac{\left(\frac{x}{15}\right)^{2}}{2!}+\right.\right. \\
& \left.\left.\frac{\left(\frac{x}{15}\right)^{3}}{3!}\right)\right)^{2} \times\left(e^{-\frac{x}{24}}\left(1+\frac{x}{24}+\frac{\left(\frac{x}{24}\right)^{2}}{2!}\right)\right)^{2} \times e^{-\frac{98 x}{165}} \times \frac{98}{165} d x=
\end{aligned}
$$

14522454098331213476368862097692665221653133074880831145217081273 92578125/391840819719834080066936357191044966832527642531881569596 $370273664050032279552=$ apx. $3.706212667867212 * 10^{\wedge}-6$

Probability point of 6 and/or 8 achieved at least four times and no higher win $=g$ $+\mathrm{h}=0.00069820960363269400$
i = Probability 5 or 9, but not both, three times, probability 5 or 9 achieved two or less times, both 4 and 10 achieved two or less, and both 6 and 8 three of less times =

2 * pr(5 or 9 exactly three times) * pr(5 or 9 two or less times) * pr(4 or 10 achieved two or less times $)^{\wedge} 2+\operatorname{pr}(6 \text { or } 8 \text { three of less times) })^{\wedge} 2=$
$\int_{0}^{\infty} 2 \times e^{-\frac{x}{15}} \times \frac{\left(\frac{x}{15}\right)^{3}}{3!} \times\left(e^{-\frac{x}{15}}\left(1+\frac{x}{15}+\frac{\left(\frac{x}{15}\right)^{2}}{2!}\right)\right) \times\left(e^{-\frac{x}{24}}\left(1+\frac{x}{24}+\frac{\left(\frac{x}{24}\right)^{2}}{2!}\right)^{2} \times\right.$ $\left(e^{-\frac{25 x}{264}}\left(1+\frac{25 x}{264}+\frac{\left(\frac{25 x}{264}\right)^{2}}{2!}+\frac{\left(\frac{25 x}{264}\right)^{3}}{3!}\right)\right)^{2} \times e^{-\frac{98 x}{165}} \times \frac{98}{165} d x=$ $364633390501256729657 / 203612782134774988800000=$
apx. 0.001790817780093488
$j=$ Probability 5 and 9 three times each, probability 5 or 9 achieved two or less times, both 4 and 10 achieved two or less, and both 6 and 8 three of less times $=$ pr(5 or 9 exactly three times)^2 * pr(5 or 9 two or less times) * pr(4 or 10 achieved two or less times $)^{\wedge} 2+\operatorname{pr}(6 \text { or } 8 \text { three of less times })^{\wedge} 2=$

$$
\begin{aligned}
& \int_{0}^{\infty}\left(e^{-\frac{x}{15}} \times \frac{\left(\frac{x}{15}\right)^{3}}{3!}\right)^{2} \times\left(e^{-\frac{x}{24}}\left(1+\frac{x}{24}+\frac{\left(\frac{x}{24}\right)^{2}}{2!}\right)^{2} \times\left(e ^ { - \frac { 2 5 x } { 2 6 4 } } \left(1+\frac{25 x}{264}+\frac{\left(\frac{25}{264}\right)^{2}}{2!}+\right.\right.\right. \\
& \left.\left.\frac{\left(\frac{25 x}{264}\right)^{3}}{3!}\right)\right)^{2} \times e^{-\frac{98}{165}} \times \frac{98}{165} d x=
\end{aligned}
$$

$379628902142645911 / 41648069073022156800000=$
apx. 9.11516213337615 * 10^-6

Probability 5 and/or 9 achieved exactly three times, both 4 and 10 achieved two or less, and both 6 and 8 three of less times $=\mathrm{i}+\mathrm{j}=0.00179993294222686000$.
$\mathrm{k}=$ probability 6 or 8 , but not both, achieved three times, and all other points 2 or less times each. =
$2^{*} \operatorname{pr}(6$ or 8 achieved exactly three times) * pr(6 or 8 achieved two or less times) * pr(5 or 9 achieved two or less times)^2 * pr(4 or 10 achieved two or less times)^2

$$
\begin{aligned}
& \int_{0}^{\infty} 2 \times e^{-\frac{25 x}{264}} \times \frac{\left(\frac{25 x}{264}\right)^{3}}{3!} \times\left(e^{-\frac{25 x}{264}}\left(1+\frac{25 x}{264}+\frac{\left(\frac{25 x}{264}\right)^{2}}{2!}\right)\right) \times\left(e ^ { - \frac { x } { 1 5 } } \left(1+\frac{x}{15}+\right.\right. \\
& \left.\left.\frac{\left(\frac{x}{15}\right)^{2}}{2!}\right)\right)^{2} \times\left(e^{-\frac{x}{24}}\left(1+\frac{x}{24}+\frac{\left(\frac{x}{24}\right)^{2}}{2!}\right)\right)^{2} \times e^{-\frac{98}{165}} \times \frac{98}{165} d x=
\end{aligned}
$$

$1864414243904975 / 438761550728134656=$ apx. 0.004249265326031731
$I=$ probability 6 and 8 , achieved three times, and all other points 2 or less times each. =
$\operatorname{pr}(6 \text { or } 8 \text { achieved exactly three times })^{\wedge} 2^{*} \operatorname{pr}(5 \text { or } 9 \text { achieved two or less times })^{\wedge} 2$ * $\operatorname{pr}\left(4\right.$ or 10 achieved two or less times) ${ }^{\wedge} 2$
$\int_{0}^{\infty}\left(e^{-\frac{25 x}{264}} \times \frac{\left(\frac{25}{264}\right)^{3}}{3!}\right)^{2} \times\left(e^{-\frac{x}{15}}\left(1+\frac{x}{15}+\frac{\left(\frac{x}{15}\right)^{2}}{2!}\right)\right)^{2} \times\left(e^{-\frac{x}{24}}\left(1+\frac{x}{24}+\right.\right.$ $\left.\left.\frac{\left(\frac{x}{24}\right)^{2}}{2!}\right)\right)^{2} \times e^{-\frac{98}{165}} \times \frac{98}{165} d x=$
$15293145095703125 / 347499148176682647552=$ apx. $4.40091585143324^{*} 10^{\wedge}-5$ probability 6 and/or 8 achieved three times, and all other points 2 or less times each. $=k+l=0.00429327448454606000$

Probability loser =
$\operatorname{pr}(6 \text { or } 8 \text { two or less times })^{\wedge} 2^{*} \operatorname{pr}(5 \text { or } 9 \text { two or less times })^{\wedge} 2^{*} \operatorname{pr}(4$ or 10 two or less times)^^2 $=$
$\int_{0}^{\infty}\left(e^{-\frac{25 x}{264}}\left(1+\frac{25}{264}+\frac{\left(\frac{25 x}{264}\right)^{2}}{2!}\right)\right)^{2} \times\left(e^{-\frac{x}{15}}\left(1+\frac{x}{15}+\frac{\left(\frac{x}{15}\right)^{2}}{2!}\right)\right)^{2} \times\left(e^{-\frac{x}{24}}\left(1+\frac{x}{24}+\right.\right.$ $\left.\left.\frac{\left(\frac{x}{24}\right)^{2}}{2!}\right)\right)^{2} \times e^{-\frac{98 x}{165}} \times \frac{98}{165} d x=$
$127269622523676773 / 128238855782400000=$ apx. 0.9924419689117637

Summary

The following table summarizes the probability and contribution to the return of all possible outcomes. The lower right cell shows a house edge of 24.81%.

EVENT	PAYS	PROBABILITY	RETURN
Point of 4 or 10 achieved four or more times	1000	0.00003691864	0.03691863657
Point of 5 or 9 achieved four or more times	500	0.00020671490	0.10335745001
Point of 4 or 10 achieved three times	120	0.00052298052	0.06275766255
Point of 6 or 8 achieved four or more times	100	0.00069820960	0.06982096036
Point of 5 or 9 achieved three times	95	0.00179993294	0.17099362951
Point of 6 or 8 achieved three times	70	0.00429327448	0.30052921392
Loser	-1	0.99244196891	-0.99244196891
Total		1.00000000000	-0.24806441599

Integrals in text form:

```
a=2*(1-exp(-x/24)*(1+(x/24)+(x/24)^2/2+(x/24)^3/6))*(exp(-
x/24)*(1+(x/24)+(x/24)^2/2+(x/24)^3/6))*exp(-98*x/165)*(98/165)
b = (98/165)*(1-exp(-x/24)*(1+(x/24)+(x/24)^2/2+(x/24)^3/6))^2*exp(-98*x/165)
c=2*(1-exp(-x/15)*(1+(x/15)+(x/15)^2/2+(x/15)^3/6))* (exp(-
x/15)*(1+(x/15)+(x/15)^2/2+(x/15)^3/6))*(exp(-
x/24)*(1+(x/24)+(x/24)^2/2+(x/24)^3/6))^2*}\operatorname{exp}(-98*x/165)*(98/165
d= (98/165)*(1-exp(-x/15)*(1+(x/15)+(x/15)^2/2+(x/15)^3/6))^2*(exp(-
x/24)*(1+(x/24)+(x/24)^2/2+(x/24)^3/6))^2* exp(-98*x/165)
e=2*(exp(-x/24)*(x/24)^3/6)*(exp(-x/24)*(1+(x/24)+(x/24)^2/2)* (exp(-
x/15)*(1+(x/15)+(x/15)^2/2+(x/15)^3/6))^2* exp(-98*x/165)*(98/165)
f=(exp(-x/24)*(x/24)^3/6)^2*(exp(-
x/15)* (1+(x/15)+(x/15)^2/2+(x/15)^3/6))^2* exp(-98*x/165)*(98/165)
g=2*(1-exp(-x*25/264)*(1+x*(25/264)+(x*25/264)^2/2+(x*25/264)^3/6))*(exp(-
x*25/264)*(1+x*(25/264)+(x*25/264)^2/2+(x*25/264)^3/6))*(exp(-
x/15)*(1+(x/15)+(x/15)^2/2+(x/15)^3/6))^2*(exp(-
x/24)*(1+(x/24)+(x/24)^2/2))^2*exp(-98*x/165)*(98/165)
h = (98/165)* (1-exp(-
x*25/264)*(1+x*(25/264)+(x*25/264)^2/2+(x*25/264)^3/6))^2*(exp(-
x/15)*(1+(x/15)+(x/15)^2/2+(x/15)^3/6))^2*(exp(-
x/24)*(1+(x/24)+(x/24)^2/2))^2*}\operatorname{exp}(-98*x/165
i= 2*exp(-x/15)*(x/15)^3/6*(exp(-x/15)*(1+(x/15)+(x/15)^2/2)* (exp(-
x/24)*(1+(x/24)+(x/24)^2/2))^2*(exp(-
x*25/264)*(1+x*(25/264)+(x*25/264)^2/2+(x*25/264)^3/6))^2*exp(-
98*x/165)*(98/165)
```

```
j = (exp(-x/15)*(x/15)^3/6)^2*(exp(-x/24)*(1+(x/24)+(x/24)^2/2))^2*(exp(-
x*25/264)*(1+x*(25/264)+(x*25/264)^2/2+(x*25/264)^3/6))^2* exp(-
98*x/165)*(98/165)
k=2*exp(-x*25/264)*(x*25/264)^3/6*(exp(-
x*25/264)*(1+(x*25/264)+(x*25/264)^2/2))*(exp(-
x/24)*(1+(x/24)+(x/24)^2/2))^2*(exp(-x/15)*(1+(x/15)+(x/15)^2/2))^2* exp(-
98*x/165)*(98/165)
I= (exp(-x*25/264)* (x*25/264)^3/6)^2* (exp(-
x/24)*(1+(x/24)+(x/24)^2/2))^2*(exp(-x/15)*(1+(x/15)+(x/15)^2/2))^2*exp(-
98*x/165)*(98/165)
Loser = (exp(-x*25/264)* (1+(x*25/264)+(x*25/264)^2/2))^2*(exp(-
x/24)*(1+(x/24)+(x/24)^2/2))^2*(exp(-x/15)*(1+(x/15)+(x/15)^2/2))^2* exp(-
98*x/165)*(98/165)
```

Recommended integral calculator: www.integral-calculator.com

